Clinical Usefulness of 18F-Fluorodeoxyglucose Positron Emission Tomography in the Management of Giant Cell Arteritis: A Systematic Review and Meta-analysis

Jean-François Fisette¹, Thomas G. Poder¹, Patrick Liang², Pierre Dagenais²

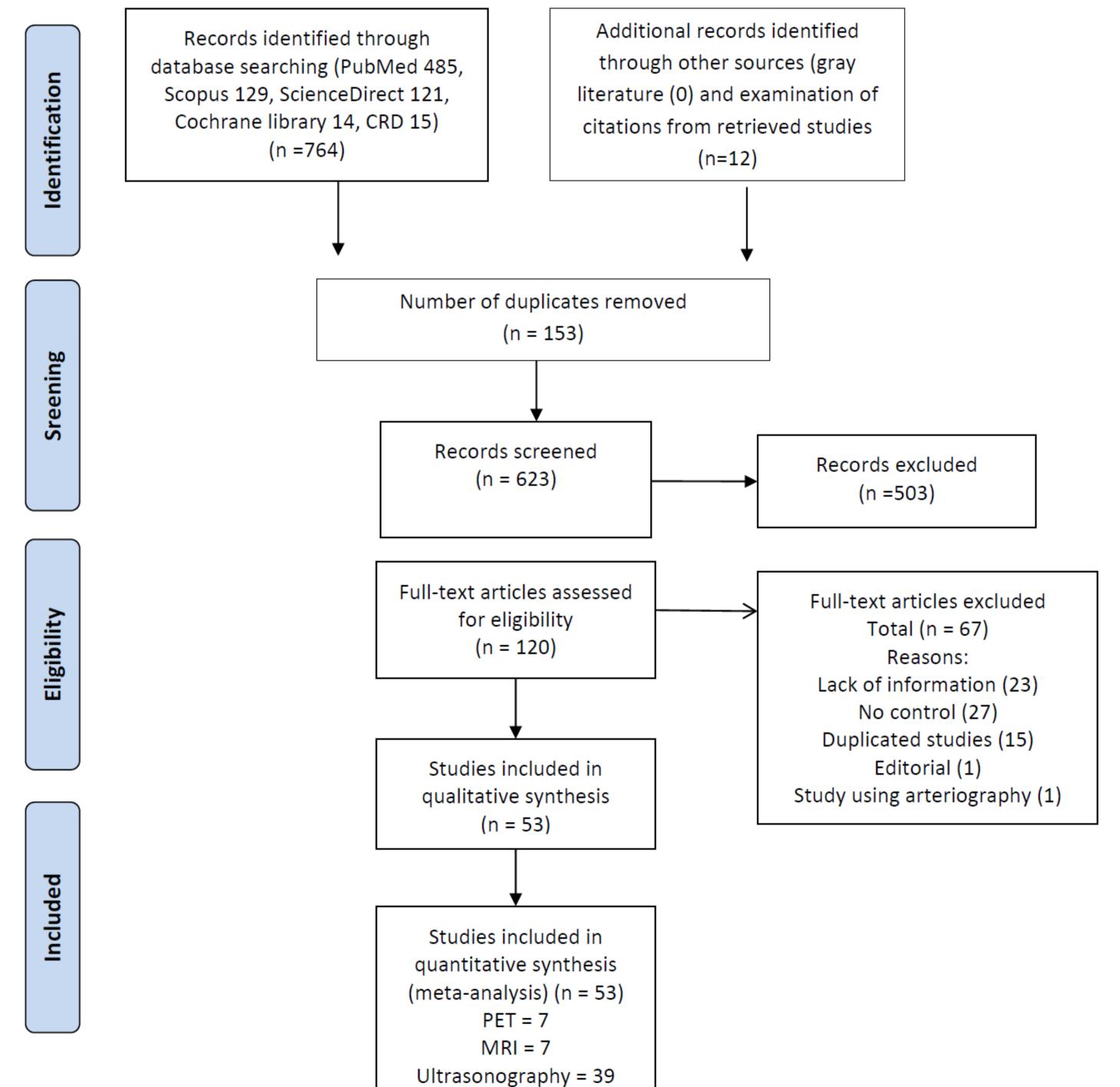
1 Health Technology Assessment Unit; 2 Department of Medicine, Division of Rheumatology; Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada

OBJECTIVES

To evaluate the diagnostic value and clinical management usefulness of the PET and PET/CT compared to US and MRI in GCA

MATERIALS AND METHODS

- Systematic review (PRISMA guidelines)
- Databases searched:
 - MEDLINE, Sciencedirect, Scopus, Cochrane Library,
 The Centre for Reviews and Dissemination (CRD)
- Grey literature
- Reference lists of retrieved studies
- Literature search up to November 2014
- Criteria:
 - Studies using FDG PET, FDG PET/CT, ultrasonography (US) or MRI
 - Diagnosis as per ACR criteria, or positive temporal artery biopsy, or clinical impression (eg. response to steroids, clinical follow up)
- Quality of publications based on GRADE methodology


RESULTS.

- No direct comparison among imaging modalities
- **PET:** Diagnostic criteria based on qualitative, semi quantitative or combination of both methods.
- MRI: 2 studies used 1.5 T instruments; 3 studies used 3T; 2 studies used both; 1 used 1T machine.
- **US:** Dx based on halo sign in 38 studies; 22 studies defined stenosis/occlusion as a sign of GCA; 18 used a combination of halo, stenosis and or occlusion.

Imaging modalities - Diagnostic criteria	No of patients (studies)	Quality of the evidence (GRADE)	Sensitivity (95% CI)	Specificity (95% CI)	Post-test probability (95% CI)	
(reference standard)					Test ⊕	Test ⊖
PET-Qualitative/semi-quantitative (multiple criteria)†	47 GCA + 48 controls (3 studies)	⊕⊖⊝⊝ Very low ^{1,2,4,5}	0,68 (0,41-0,86)	0,95 (0,83-0,99)	90% (62-98%)	18% (9-32%)
PET/CT-Qualitative/semi-quantitative (multiple criteria)†	75 GCA + 83 controls (4 studies)	⊕⊖⊖⊖ Very low ^{1,2,4,5}	0,78 (0,64-0,86)	0,90 (0,72-0,97)	84% (60-95%)	14% (9-25%)
MRI-Mural thickening/mural contrast enhancement (vs ACR criteria)	92 GCA + 65 controls (5 studies)	⊕⊖⊖⊖ Very low ^{3,4,6}	0,63 (0,40-0,81)	0,84 (0,68-0,93)	72% (45-89%)	23% (12-37%)
MRI-Mural thickening/mural contrast enhancement (vs biopsy)	132 GCA + 78 controls (8 studies)	⊕⊖⊖⊖ Very low ^{3,4,5}	0,82 (0,64-0,92)	0,77 (0,66-0,86)	70% (56-81%)	13% (6-27%)
Ultrasonography-Halo (vs ACR criteria)	374 GCA + 751 controls (14 studies)	⊕⊕⊖⊖ Low ^{4,6}	0,69 (0,55-0,80)	0,89 (0,80-0,94)	81% (65-90%)	19% (12-27%)
Ultrasonography-Stenosis or occlusion (vs ACR criteria)	201 GCA + 577 controls (8 studies)	⊕⊕⊖⊝ Low ^{4,6}	0,40 (0,23-0,60)	0,88 (0,77-0,94)	69% (40-87%)	31% (22-44%)
Ultrasonography-Halo, stenosis or occlusion (vs ACR criteria)	282 GCA + 623 controls (8 studies)	⊕⊕⊖⊝ Low ^{4,6}	0,71 (0,52-0,85)	0,86 (0,77-0,92)	77% (60-88%)	18% (10-29%)
Ultrasonography-Halo (vs biopsy)	492 GCA + 692 controls (25 studies)	⊕⊕⊖⊝ Low ^{4,6}	0,76 (0,66-0,83)	0,79 (0,72-0,85)	71% (61-79%)	17% (12-24%)
Ultrasonography-Stenosis or occlusion (vs biopsy)	213 GCA + 368 controls (15 studies)	⊕⊕⊖⊝ Low ^{4,6}	0,64 (0,48-0,77)	0,74 (0,63-0,83)	62% (46-75%)	24% (16-35%)
Ultrasonography-Halo, stenosis or occlusion (vs biopsy)	205 GCA + 238 controls (10 studies)	⊕⊕⊖⊝ Low ^{4,6}	0,83 (0,65-0,92)	0,76 (0,62-0,86)	70% (53-81%)	13% (6.0-27%)

Prefest probability 10%		Prefest probability 90%		
Test ⊕	Test ⊖	Test ⊕	Test ⊖	
60%	3.6%	99%	75%	
(21-91%)	(1.5-7.3%)	(96-100%)	(56-86%)	
46%	2.6%	99%	69%	
(20-76%)	(1.6-5.3%)	(95-100%)	(57-82%)	
30%	4.7%	97%	80%	
(12-56%)	(2.2-8.9%)	(92-99%)	(65-89%)	
28%	2.5%	97%	68%	
(17-42%)	(1.0-10%)	(94-98%)	(46-83%)	
(17 4270)	(1.0 1070)	(34 3670)	(40 0370)	
41%	3.7%	98%	76%	
(23-60%	(2.3-5.9%)	(96-99%)	(66-84%)	
27%	7.0%	97%	86%	
(10-53%)	(4.5-1.0%)	(90-99%)	(79-90%)	
36%	3.6%	98%	75%	
(20-54%)	(1.8-6.5%)	(95-99%)	(59-85%)	
29%	3,3%	97%	73%	
(21-38%)	(2.2-5.0%)	(95-98%)	(64-81%)	
21%	5,1%	96%	81%	
(13-33%)	(3.0-8.4%)	(92-98%)	(71-88%)	
28%	2,4%	97%	67%	
(16-42%)	(1.0-5.9%)	(94-98%)	(46-84%)	

Figure 1. PRISMA flow diagram of citations reviewed

DISCUSSION

- The results from this review suggest that PET has similar diagnostic performance compared to temporal and axillary artery ultrasonography and MRI for GCA. However,
- no head-to-head study
- Different Dx gold standards used in PET and PET/CT subgroups and in MRI and ultrasonography groups
- Various duration of corticosteroids prior to imaging
- PET does not assess temporal arteries; however, could be costeffective when large vessels only are involved

CONCLUSION

- Large vessel involvement is frequent in GCA and PET appears as a valid diagnostic modality;
- The prognostic value of the identification of large vessel involvement remains to be determined through prospective studies.

